ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter.

نویسندگان

  • B N Atkinson
  • S C Bell
  • M De Vivo
  • L R Kowalski
  • S M Lechner
  • V I Ognyanov
  • C S Tham
  • C Tsai
  • J Jia
  • D Ashton
  • M A Klitenick
چکیده

High-affinity glycine transport in neurons and glial cells is a primary means of inactivating synaptic glycine. We have synthesized a potent selective inhibitor of glycine transporter 1 (GlyT1), and characterized its activity using a quail fibroblast cell line (QT6). The glycine transporters GlyT1A, GlyT1B, GlyT1C, and GlyT2 were stably expressed in QT6 cells. The transporters expressed in these cells exhibited appropriate characteristics as described previously for these genes: Na(+)/Cl(-) dependence, appropriate K(m) values for glycine uptake, and appropriate pharmacology, as defined in part by the ability of N-methyl glycine (sarcosine) to competitively inhibit glycine transport. Furthermore, the characteristics of the transporters in the cell lines recapitulate the characteristics of glycine transporters observed in tissue preparations. We developed a sarcosine derivative, (R)-(N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine (ALX 5407), and examined its activity against the cloned glycine transporters. ALX 5407 completely inhibited glycine transport in the GlyT1 cells, with an IC(50) value of 3 nM, but had little or no activity at the human GlyT2 transporter, at other binding sites for glycine, or at other neurotransmitter transporters. The inhibition of glycine transport was essentially irreversible. ALX 5407 represents a novel tool in the investigation of N-methyl-D-aspartate-receptor function. This class of drug may lead to novel therapies in the treatment of schizophrenia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the modulation of acute ethanol intoxication by pharmacological manipulation of the NMDAR glycine co-agonist site.

BACKGROUND Stimulating the glycine(B) binding site on the N-methyl-d-aspartate ionotropic glutamate receptor (NMDAR) has been proposed as a novel mechanism for modulating behavioral effects of ethanol (EtOH) that are mediated via the NMDAR, including acute intoxication. Here, we pharmacologically interrogated this hypothesis in mice. METHODS Effects of systemic injection of the glycine(B) a...

متن کامل

Differential regulation of NMDA receptors by d-serine and glycine in mammalian spinal locomotor networks

Activation of N-methyl-d-aspartate receptors (NMDARs) requires the binding of a coagonist, either d-serine or glycine, in addition to glutamate. Changes in occupancy of the coagonist binding site are proposed to modulate neural networks including those controlling swimming in frog tadpoles. Here, we characterize regulation of the NMDAR coagonist binding site in mammalian spinal locomotor networ...

متن کامل

Mutant mice with reduced NMDA-NR1 glycine affinity or lack of D-amino acid oxidase function exhibit altered anxiety-like behaviors.

Several compounds that promote activation of the N-methyl-d-aspartate receptor (NMDAR) glycine site have been proposed as treatments for schizophrenia, but the impact of these putative antipsychotics on anxiety remains unclear. In this study, we employed genetic and pharmacological mouse models of altered NMDAR glycine site function to examine the effects of these proposed treatments in uncondi...

متن کامل

Inhibitors of GlyT1 and GlyT2 differentially modulate inhibitory transmission.

The chronic effects of glycine transporter 1 and 2 inhibitors (sarcosine and ALX-1393, respectively) on miniature inhibitory postsynaptic currents were studied in cultured spinal neurons. We found that sarcosine increased the frequency of overall miniature inhibitory postsynaptic currents without affecting the ratio of glycinergic, mixed and GABAergic miniature inhibitory postsynaptic currents,...

متن کامل

Blockade of glycine transporter (GlyT) 2, but not GlyT1, ameliorates dynamic and static mechanical allodynia in mice with herpetic or postherpetic pain.

Glycine is an inhibitory neurotransmitter in the spinal dorsal horn and its extracellular concentration is regulated by glial glycine transporter (GlyT) 1 and neuronal GlyT2. This study was conducted to elucidate the effects of intrathecal injections of GlyT1 and GlyT2 inhibitors on two distinct types of mechanical allodynia, dynamic and static allodynia, in mice with herpetic or postherpetic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 60 6  شماره 

صفحات  -

تاریخ انتشار 2001